\qquad
\qquad
\qquad

3.1.4 How can I use equivalent ratios?

Applications and Notation

- Now that you have a good understanding of how to use ratios in similar figures to solve problems, how can you extend these ideas to situations outside the classroom? You will start by considering a situation for which you want to find the length of something that would be difficult to physically measure.

3-35. GEORGE WASHINGTON'S NOSE

- On her way to visit Horace Mann University, Casey stopped by Mount Rushmore in South Dakota. The park ranger gave a talk that described the history of the monument and provided some interesting facts. Casey could not believe that the carving of George Washington's face is 60 feet tall from his chin to the top of his head!
- However, when a tourist asked about the length of Washington's nose, the ranger was stumped! Casey came to her rescue by measuring, calculating and getting an answer. How did Casey get an answer?
- Your Task: Figure out the length of George Washington's nose on the monument. Work with your team to come up with a strategy. Show all measurements and calculations on the next page with clear labels so anyone could understand your work. There are questions below to guide your thinking.
- What is this question asking you to find?
- How can you use similarity to solve this problem?
- Is there something in this room that you can use to compare to the monument?
- What parts do you need to compare?
- Do you have any math tools that can help you gather information?
\qquad Date: \qquad
\qquad
- 3-36. When solving problem 3-35, you may have written a proportional equation like the one below. When solving proportional situations, it is very important that parts be labeled to help you follow your work.

$$
\frac{\text { Length of George's Nose }}{\text { Length of George's Head }}=\frac{\text { Length of Student's Nose }}{\text { Length of Student's Head }}
$$

- Likewise, when working with geometric shapes such as the similar triangles below, it is easier to explain which sides you are comparing by using notation that everyone understands

a. One possible proportional equation for these triangles is $\frac{A C}{A B}=\frac{D F}{D E}$. Write at least three more proportional equations based on the similar triangles above.
b. Jeb noticed that $m \angle A=m \angle D$ and $m \angle C=m \angle F$. But what about $m \angle B$ and $m \angle E$? Do these angles have the same measure? Or is there not enough information? Justify your conclusions.

3-37. The two triangles below are similar. Read the Math Notes box for this lesson to learn about how to write a statement to show that two shapes are similar.
\qquad Date: \qquad Period: \qquad

Then examine the two triangles below.

Describe a sequence of transformations that carries one triangle onto the other. Use tracing paper to help.
a. Which of the following statements are correctly written and which are not? Note that more than one statement may be correct. Discuss your answers with your team.
i. $\triangle D O G \sim \triangle C A T$
ii. $\quad \triangle D O G \sim \triangle \mathrm{C} T A$
iii. $\triangle \mathrm{OG} D \sim \triangle A T C$
iv. $\triangle D G O \sim \triangle C A T$

3-38. Find the value of the variable in each pair of similar figures below. You may want to set up tables to help you write equations.
a. $A B C D \sim J K L M$

\qquad Date: \qquad
\qquad
b. $\triangle N O P \sim \triangle X Y Z$

c. $\triangle G H I \sim \triangle P Q R$

d. $\triangle A B C \sim \triangle X Y Z$

- 3-39. Rochida drew $\triangle A B C$ below and then dilated it to create $\triangle A B^{\prime} C^{\prime}$.

. Why are the two triangles similar?
a. What is the relationship of the lengths $A B$ and $A B^{\prime}$. What about between $A C^{\prime}$ and AC ? Justify your answer.
\qquad Date: \qquad Period: \qquad
b. Rochida decides to redraw the shape as two separate triangles, as shown below. Write and solve a proportional equation to find x using the corresponding sides.
c.

d. How long is AC ? How long is AC^{\prime} ?
e. What must the ratio of the original segment $\overline{B C}$ to its image $\overline{B^{\prime} C^{\prime}}$ be? Explain.
f. What is the relationship between $\overleftrightarrow{B^{\prime} C^{\prime}}$ and $\overleftrightarrow{B C}$?

3-40. LEARNING LOG

Write a Learning Log entry describing the different ways you can compare two similar objects or quantities with equivalent ratios. Title this entry "Comparing With Ratios" and include today's date.

